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It is shown that in the presence of uniform suction in the boundary
layer the slip velocity and temperature jump should be taken into
account irrespective of the degree of rarefaction.

The problem of uniform boundary-layer suction on
a flat plate was examined in [1-3]. The existence of a
constant negative velocity at the plate surface makes
it possible to obtain a solution that does not depend
on the longitudinal x-coordinate. This solution is
applicable only at a certain distance from the leading
edge. This asymptotic state is reached when x4, =
=4uuoo/pv§ [1]. A similar problem for a noniso-
thermal rarefied gas flow was solved in [4]; here, the
usual slip and temperature-jump equations were used
as the boundary conditions

p=2—1 4 (1)
f dy
Ty =52 =P , dT (2
8f dy

However, in the case of a permeable surface [5]
condition (2) changes (it includes an additional term
containing the suction velocity vq). ‘

We found an asymptotic solution for the problem of
uniform suction in a rarefied gas boundary layer with
allowance for these modifications.

Assume that the gas is incompressible and that the
specific heat, coefficient of viscosity, and Prandtl
number are constant (valid for small temperature
drops and small Mach numbers M,,).

From the continuity equation

v =1, = const < 0, (3)

while the equations of motion and energy take the form

e, du
00y dy ] dy2 )
ar 4T du \?
p%——=ﬂ>—;+~£{——)» (4)
dy ¢ dy ¢, \ dy

For the boundary conditions at the surface of the
plate (y = 0) we use condition (1) and the temperature

jump equation from [5]

— %
T—T,=2—f[15 ,dT _(2aTo\¥ 0 ] (5
f 8 dy R 8
In the flow outside the boundary layer
U=Ux, T = To:t (6)

We introduce the new dimensionless variable

=

Now Eqs. (3) and (4) may be written as

d’u du
4+ = =0, 7
dz2 ' dz (M
dT dr o [ dul?
el —— =l =, 8
dz? dz ¢, ( dz ) ®

and boundary conditions (1) and (5) at z = 0 take the
following form:

=h—,
u 5 %)

, 15 ,dT | 2—fF /20T \ % |0

—Tp= — p o J L2 0 ) IT

Toshdz+f(R)8 (10)
where

W 2—F o5
f u

Since the dimensionless parameter h does not depend on
temperature, Eq. (7), the first of conditions (6), and con-
dition (9) completely determine the velocity profile

_expf{—z] ) (11)

u=um(1 -
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The solution of energy equation (8) with the second
of conditions (6) is

2

. (o278
I'=To— 2,2—0) (12~
xexp{ —2z} + Aexp {—o2}, (12)

Slip Velocity and Temperature Jump as Functions of the
Parameter h

R AT,°K A'T,°K e
h Ivol, m/sec u(0), m/sec T(0), 'K from (5) from (2) (AT - A'T), " K
a4 .
0.01 2.6 2.0 352.2 2.2 1.3 0.9
0.05 13.1 9.5 360.0 10.0 5.9 4.1
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where the coefficient A is found from (10)

A= Tl) "‘Tao +
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2—f(2nTo)‘/ﬁ [T 13
- . . (13)
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Setting z = 0 in(11)and(12), we find the slip veloc-
ity and the gas temperature at the surface

h

0) = o —tt, 14
u(0)=u T h (14)

TO) =Tot+ 2o

1+——ho
15’10”&
e 1 15
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S—f(amTO\% | 15
5 ( (15)
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From (14) and (15) we conclude that for given o,
fs UWeo, Ty and Te the slip velocity and tempera-
ture jump are determined by the parameter h. It is
known from elementary kinetic theory that u =pla/2.
Consequently, h = (2(2 — f)/fXIvl /a), i.e., for given
f, the parameter h is proportional to the relative
suction velocity and does not depend on the degree of
rarefaction. Hence, other things being equal, the slip
velocity and temperature jump depend only onthe suc-
tion velocity. In this case the boundary conditions must
be written in the form of (1) and (5) for any degree
of rarefaction. In other words, the usual boundary
conditions of no slip and equality of the gas and wall
temperatures do not hold,

The last term in expression (15) does not depend
on the free-stream parameters. However, as Mw
increases, the relative contribution of this term to
the temperature jump decreases.

The table gives the results of numerical calcula-
tions for air at h = 0,01, and 0.05 for the following
values of the parameters: o =1, f =1, U, =200 m/
/sec, Ty =350° T, =400°

As seen from the table (last column), the second
term in condition (5) makes an additional contribution
to the temperature jump at the wall which coincides
in order of magnitude with the temperature jump
calculated using condition (2).

Using (11), we obtain an expression for the shear
stress on the plate and the displacement thickness
of the boundary layer

T =W — =

ady |y 14+h
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0

When slip is not accounted for inthe boundary con-
ditions, these quantities are, respectively, given by

To =00 | tte, 8= pip|0ol-

Hence we conclude that taking slip into account in the
boundary conditions leads to a reduction in skin fric-
tion and displacement thickness of the boundary layer,
In determining the specific heat flux at the wall in

a flow with slip it is necessary to consider the heat
supplied to the surface as a result of the work done
by the friction forces

du )

dy y=0

Using (11) and (12), we obtain

9= tue

p]vo| us

q=~ACpplUOI+

If the slip and temperature jump are not taken into
account, the specific heat flux is

2
qo=c,,plvol(Tm-To+%'i)- (17)
14

It should be noted that 7, 6%, and q depend not only
on h (or |V0|), but also on p, i.e., on the degree of
rarefaction. However, the relative changes in these
quantities do not depend on p. In particular, as calcu-
lations show, taking the slip and temperature-jump
conditions into account leads to a reduction in the
specific heat flux q as compared with gy by about 14 %
at h=0,05 and 3% at h =0.01,

The parameter h characterizes the degree of
rarefaction of the gas only if p|vy| = const. Then h ~ |
and decreases with increase in gas density. On the
other hand, at constant p IVOI an increase in gas den-
sity causes a decrease in suction velocity. Therefore
in the limit as [ — 0 we obtain the solution of the
familiar problem of uniform suction withoutallowance
for slip and temperature jump [3].

NOTATION

p is the gas density; vy is the suction velocity;
u is the tangential component of gas flow velocity; T
is the gas temperature; T, is the plate temperature;
AT =T(0) — Ty; f is the accommodation factor; [ is
the mean free path; p and A are the coefficients of
viscosity and thermal conductivity of the gas, respec-
tively; cp is the specific heat at constant pressure;
o isthe Prandt]l number; ¢ isthe mean thermal veloc-
ity; R =k/m; k is the Boltzmann constant; m is the
molecular mass,
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